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Abstract

* Wavefront estimation from shearing interferometry

measurements is considered in detail. Two analyses are

presented, which involve the estimation of constant phase

from single detector and detector array measurements. The

single detector analysis is carried out in a discrete mode

to obtain algorithms based on photon counting as the alter-

nate means for use under low light level conditions. The

method used follows the Maximum A Posteriori and Maximum

Likelihood estimation theories. This is done for measure-

ments made in both white Gaussian noise and Poisson shot

noise limited conditions. The results so obtained are

trigonometric relationships between the phases and the

photon counts. The theoretical performance results show a

strong signal-to-noise ratio dependence. Simulation results

show that signal-to-noise ratios of 17 dB or better are

needed to produce adequate estimates. Both theory and sim-

ulation show that an estimate improvement is obtained as

more photon counts are performed, and in the limiting case,

the ideal form is a current measurement. In this sense,

although photon counting seems to be inferior to current

measuring, the error variance is only 1.65 dB larger in the

worst case, where three photon counts are performed.

The ML estimator was found to be computationally sim-

pler than the MAP estimator, and with similar performance for

SNR's in the order of 10 dB and higher.

xiv



An extension of the single detector analysis is made,

using only the Gaussian noise assumption, to derive an

algorithm that jointly estimates the phase distribution

over an optical wavefront. The procedure is based on a

parametric dependence between the measurements performed by

adjacent detectors, and on the a priori knowledge available

through a covariance matrix. An algorithm for processing

continuous waveform measurements is developed, but no com-

puter simulation is included due to difficulties encount-

ered in solving the feedback system equations.

xv



PHASE ESTIMATION TECHNIQUES FOR ACTIVE

OPTICS SYSTEMS USED IN REAL-TIME

WAVEFRONT RECONSTRUCTION

I Introduction

Reconstruction of a wavefront in real time is of par-

ticular interest to the Air Force because of the need to

comrpensate for atmospheric disturbances and target varia-

tions that adversely affect laser weapons systems. Wave-

front correction systems of diverse complexity are employed

to maximize the irradiance of the laser on a target. The

laser beam is continuously shaped in real time by means of

mirrors to reconstruct the detected wavefront of the tar-

get's radiation. Actually, the complex conjugate field is

reconstructed to propagate back to the target a wavefront

with the same characteristics but in complementary form.

Prior to such reconstruction, the phase distribution of the

wavefront must be estimated over the region of space

enclosed by the aperture of the receiving system. The most

common method used for measuring the phasefront is shearing

interferometry. The search for improved phase estimation

techniques using the outputs of shearing interferometers

constitutes the basis of this thesis. The shearing inter-

ferometer will be discussed in Chapter II.

System Description

Active optics systems have been widely described in

the literature and only a brief description is necessary



for the purpose of this paper. Detailed systems descrip-

tions are given by Hardy (Ref 3), Hudgin (Ref 5), Rimmer

(Ref 10) and Martoni (Ref 7:1) among many. The system

operation basically consists of wavefront detection, phase-

front estimation, and beam control. Figure 1 shows a sim-

plified block diagram of a typical system. In such a sys-

tem, a reflecting telescope is used both as entrance aper-

ture for the optical radiation from the target, and as exit

aperture for the laser beam. Both input and output wave-

fronts travel the same path in opposite directions. Part

of the incoming field is deflected off onto a phasefront

sensor usually composed of two shearing interferometers.

The output of this sensor is translated into control com-

mands which actuate deformable mirrors off which the laser

beam is reflected onto the target, Since this is done in

real time, the atmosphere induces on the laser wavefront

the reverse distortion effects induced on the detected

field. The radiation reaching the target has, therefore,

been adjusted for maximum irradiance.

Problem Statement

There is an issue expressed by the Weapons Laboratory

that when the target radiance is low, the detectable field

is not strong enough to perform phasefront estimation base

on conlinuous signal measurements. A phase estimation tech-

nique was proposed by J. C. Wyant in 1975 (Ref 16:2624),

based on detector processing of photon counts observed

2



/ Mirror Control

Fig 1. A Typical Real-Timne Wavefront Correction System
(Adapted from Ref 7)

II

during short time intervals. Although his assumption is

shot noise limited detection, his results are free from

noise considerations, and the simplicity of the resulting

algorithm motivates one to investigate more deeply into his

technique. The overall wavefront is obtained from a mapping

of independent phase estimates over the aperture of the sys-

tem.

The purpose of this paper is to explore the photon

counting technique from a statistical point of view and to

examine in detail the effects of receiver and signal shot

noises in order to determine the extent to which this pro-

cedure can be applied efficiently. Joint processing of

multiple detectors has also been considered within the

3



scope of this work in an attempt to obtain improved results

over linear mappings currently used to estimate the wave-I
front over the region of interest.

Approach

The basic approach to the problem is based on countable

observables obtained by decomposing the continuous output

of a detector into discrete components. The problem

reduces to classical parameter estimation theory and will

be carried out using the concepts of Maximum A Posteriori

and Maximum Likelihood estimation theories. To fulfill the

purpose of this approach, it is assumed that specially

designed detectors are available, based on the promising

future of charge-coupled devices (CCD) (Ref 13:Chapter 12),

which are capable of integrating the detected field signal

over short periods of time and dumping the contents into

the registers of a computer. Such a receiver can be repre-

sented mathematically with a time correlator to be described

later in Chapter III.

Scope and Assumptions

In this thesis, the wavefront process will be con-

sidered slow varying in time such that a stepwise approxi-

mation to the actual variation can be performed. The phase

in each step of length T will be constant and the analysis

of the problem will be limited to a single observation

interval (O,T). An extension to sequential estimation over

successive intervals can then be performed using Gauss-

4



Markov parameter models. That will not be considered in

this thesis. Constant phase is, therefore, the basic

assumption of the forthcoming developments. The disturb-

ance induced by the atmosphere will be modeled as an addi-

tive noise phase to the target wavefront. There is no need

to distinguish between the target and noise induced phases

because the reverse disturbance effects produced on the

laser wavefront by the atmosphere cancel the noise compon-

ent. Therefore, they will be lumped together into a single

parameter e, where 0 is a random variable. The probabilis-

tic descriptions of 0 will be fitted to the ones given by

Gaussian and uniform probability density functions in the

interval (-n,i). Other than for ease in estimator deriva-

tion, the Gaussian model is chosen considering that for

slow varying wavefronts, the phase variations are more

likely to be concentrated about the zero value and less

likely as the phase value increases. On the other hand,

because the sensor output is a sinusoidal variation, the

uniform density is also a logical choice since the phases

are equally likely in the interval (-Tr).

Estimation of e will be analyzed in the presence of

noise from two points of view: predominant detector noise

and predominant signal shot noise processes. Chapter IV is

devoted to the analysis of the detector limited case, where

the noise is modeled as a continuous white Gaussian random

process. Chapter V is devoted to the analysis in signal

induced noise, where the noise is modeled as a discrete

5



Poisson count process. A mixed mode of continuous and dis-

crete processes will not be considered in this paper, butI
deserves future attention. An extension of the Gaussian

noise analysis is performed in Chapter VI where the same

concepts are applied to joint processing of two plane

detector arrays. Finally, Chapter VII makes a summary of

results and conclusions, and presents suggestions for fur-

ther study.

6



II The Shearing Interferometer

The wavefront sensor of interest in this thesis con-

sists of two ac heterodyne, lateral shearing interferometers.

This sensor configuration is depicted in Figure 2. The

field entering the system is beamsplit into two channels.

Each channel has a shearing interferometer composed of two

confocal lenses which constitute a Fourier transform pair.

The field at the common focal point is the Fourier trans-

form of the received field. The Fourier transform field is

sampled with a radial grating displaced off the optic axis

and rotating with velocity v and period t. An expanded

view is shown in Figure 3.

If the aperture is located at the front focal plane of

lense L., the field observed at the back focal plane of

lense L2 is sheared into a number of components laterally

displaced from each other by an equal distance Msd, known

as the shear distance, where sd is a parameter of the inter-

ferometer determined by v, and M is a magnification factor

determined by the ratio of the lenses in the system. The

field components so displaced interfere with each other, and

the modulated output is observed in the form of an inter-

ferogram spread over a detector array. It is this slowly

but continuously changing interferogram that contains the

wavefront phase information being sought.

7



Rotating Grating

Beam Splitter

Input Y-Channel Y-Shear
Field Interferogram

Mirror ,

S X-Shear

X-Channel I Interferogram

Fig 2. A Two Shearing-Interferometer Sensor Used with
Wavefront Correction Systems (Adapted from Ref 3)

Output Field

The sheared field at the focal plane takes on slightly

different forms for broadband (white light) and monochro-

matic fields. However, the same equation is applicable in

both cases when the shear is small. Thus, for spatially

coherent, white light aperture fields when the shear dis-

tance Msd is small, the detector field intensity is given by

(Ref 6:58,61)

Id(rd,t) (. + .)M2 [A()] 2

+ 72 M2 [A( r a 2H 2 o(- a,t)sin ( wt + ( a,t))

for 0 t & T, (2-1)
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Ya Rotating Grating

aY

r
a

aL Optic

Axis

Aperture 2d

P Direction ofPlane f 2 f Shea r

Detector Plane

Fig 3. Expanded View of the X-Channel Interferometer
(Adapted from Ref 6)

where O(ra- MSd,t )+l( a +Ms d,t )
(ra,t) = 2 (ra,t) (2-2)

and
(r a-Ms d,t)-(r a+Ms ,t )

O(ra ) = 2 (2-3)

are phase functions in terms of the phases at locations ±Msd

from r a The term A(r a ) is the amplitude of the aperture

field at location ra = Mr shown in Figure 3. For slow

varying fields over the aperture and constant intensity,

Eq. (2-1) can be simplified to (Ref 7:10,6:59)

Id(dt) = + 2L)M2A2 + 2M 2A2 sin((,t + O(r (2-1)

9



The frequency

= 27 (2-5)T

is the fundamental modulation frequency of the detector

field (Ref 6:41). Double frequency and higher order fre-

quency terms have been dropped from Eqs. (2-1) and (2-4),

anticipating subsequent signal processor filtering.

Detector Signal

The output r(t) of a detector at location r in the

back focal plane is computed from the received field intensi-

ty Id(rd, t,(r a,t)) and the detector noise as fo-.ows:

r(t) = s(t,e(t)) + n(t), at r d Aperture, (2-6)

where (Ref 2:54-55)

s(t,O(t)) hf d (rd (Mrd)dr

for Q(rd,t) constant over Ad, (2-7)

is the signal current. The constant q/hf is a detector con-
0

version factor, Ad is the area of the detector, and

Id(pd,te(rd,t)) is the field of the detector given by Eq.

(2-4) at location rd = ra/M. The assumption made here is

that the field intensity at r is constant over the detec-

tor area. If the observation time is short enough such that

the phase is approximately constant in the interval (O,T) to

10



fit the assumptions of Chapter I, the time dependence of

the phase can be dropped. The interval T is assumed to be

much larger than the period T of the modulated field.

Equation (2-6) becomes

r(t) = s(t,O) + n(t), 0 _< t < T (2-8)

where

s(t,O) = a + b sin(,wt + 0) (2-9)

is the output signal of one detector, and

a gn 32 i + ) M 2A 2Ad (2-10)
hf 4

b - (2M 2)Ad 2 (2-11)hf o  T)d

Chapter III further models the detector signal in order to

pursue the photon count approach established in Chapter I.

11



III Phase Estimation Preliminaries

Reconstruction of the wavefront requires knowledge of

the phase distribution of the optical field within the aper-

ture. However, the knowledge provided by the shearing

interferometers is in the form of a phase difference between

two points along the line of shear as given by Eq. (2-3).

In the simplest form, the problem is of phase difference

estimation from the measurement of a single detector. The

phase difference is known as the wavefront difference func-

tion given by (Refs 6:49 and 7:16)

A a - MSd) - (r + Msd) (3-1)

where (ra - Msd) and p(ra + MSd) are the phases at the

aperture which we ultimately want to estimate. The compo-

nents of the wavefront difference function in cartesian

coordinates are given by

(ra - Msa MdxYa X-shear (3-2)

= O(Xa' Ya - MSdy) Y-shear (3-3)

(r+ ) = O(X a + MS dx,Y ), X-shear (3-4)

*(Xa' Ya + MSdy)' Y-shear (3-5)

Figure 4 illustrates the phase distribution described by

Eqs. (3-2)-(3-5). The shear distances are usually made

equal so that dx dy -d" When M = -1 (rd and Sd are

12



(X a Y + Msd) -a - Ms

I ... 
-- X-Detector in

(X Y- Msd) Y-Detector in -Xd,-Yd Plane
a -Xd'-Yd Plane

S,Y Plane /
/ \

Y-Direction X Plan
a' a

/ (Xa,Y a ) \

(x a-Ms d,Y a) (X a+MsdYa )

X-Direction

Fig 4. Phase Distribution at the Aperture Seen by
Detectors in the Back Focal Plane

also negative), the wavefront difference function measured

at the detector plane gives information of the phase points

located one shear distance s d away on each side of the

detector. To estimate the actual phases , the information

must be collected from all detectors. This will be addressed

in Chapter VI. Chapters IV and V will concentrate on the

estimation of the phase difference e(r d) from one detector

only. Prior to considering the estimation problem, a signal

model must be found using the hypothetical CCD photon count-

ing detector.

13



Signal Model

A signal model is developed in this section to estimate

the phase difference e measured by each detector following

the integration approach with CCD devices. This is equiva-

lent to saying that the output of each detector is sampled

by a correlator structure as shown in Figure 5. In this

correlator model, the observation r(t), which represents

the cathode current, is sampled by a vector of K orthogonal

basis functions

(t) = [ t . . j(t) . . ] T ,  (3-6)

(the superscript T means transpose of the matrix) where each

basis function j(t) is given by

1
Wj() tj : t : tj+

J q J+l

- 0 , otherwise, (3-7)

with q being the electron charge and t. a sequence of kJ

equal-length, non-overlapping time subintervals in one

observation interval of length T. The resulting output is

a vector of k observations

[r 1 ... r ... rk ]  (3-8)

which represent photon counts in the time subinterval

(t,tj+l). With the signal represented in this manner, the

following equalities are true:
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fT ( )dt - rj

r (t)

f T ( ) dt rk

4k(t)

Fig 5. Equivalent Correlator Model of the CCD Detector

t1 +T

i(t) j t dt -, 1 = j
tl q2 k

an 0 ,i j (3-9)

and

2 k
r(t) l.i.m. k r .j (t) , (3-10)

k T j

is satisfied. This condition known as the Cauchy criterion

for convergence of random sequences (Ref 8:262) is satis-

fied by the choice of the t.'s as non-overlapping time)

subintervals. Equations (3-9) and (3-10) are the tools

needed in the forthcoming parameter estimation analysis.
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This analysis will be the classical discrete observation

problem with generalizations to the continuous observation

form using Eq. (3-10). For this purpose and to define t

properly, the observation period is divided into k equal

subintervals (tj,tj+l ). The functions i.(t) are, therefore,

identical except for their sequential posi::ion in time. In

order to simplify the derivation let the initial time be

t = -T/2k and the final time t1+T be tk = (2k-i)T/2k for

any interval T. Thus, the integration limits for the jth

subinterval are

_ (2j-3)T (3-12)
3  2k

and t (2j-l)T (3-13)j+1 2k

The correlation operation
T

rj = f r(t) i(t)dt , (3-14)

indicated in Figure 5 is then given by

Ij+l
tr r(t) dt

rj= q~~~d+nt t, (-5
t.

J s(t,0) dt + n(t) dt , (3-15)
q I q

tj tj

which can be conveniently defined as

r. = s.(0) + n. , (3-16)

16



where

sj (0) 1 s (t,0)dt (3-17)
t.
)

and .t+
na 1J n(t)dt (3-18)

t.

with tj and tj+ 1 given by Eqs. (3-12) and (3-13). Because

the observation r(t) has the form of an electrical current,

the correlation functions of Eq. (3-7) were selected so that

r., s(O), and n. have the physical interpretation of photons,

both signal and noise, counted in each observation subinter-
k

val (t,t j+). The sum E r. corresponds to the total
j=1 3

photons counted in the observation interval (t1 t1 +T). If

the functional form of s(t,O) given by Eq. (2-9) is substi-

tuted into Eq. (3-17), the signal in discrete form becomes

t j + l

s 1 [a + b sin(wt + e)]dt (3-19)
q t.

for e(t) constant over T.

The integration indicated by Eq. (3-19) yields

s = a [t - tj
s q j+l i

+b [cos(Wt. + 8) - cos(Wt + 0)] . (3-20)
Wj j+l

If the observation interval is several times the modulation

period so that many frequency cycles are observed each time,

17



then they are related by

N = T (3-21)

where T is as in Eq. (2-5). With the identity of Eq. (3-21)

substituted into Eq. (3-20), the signal equation becomes

aT +bTs.(0) = -- T
j qk 2mqN

nN NN[cos( --( 2 j- 3 )+O)-cos(-j- (2j-l)+O)] , (3-22)

where the definitions of Eqs. (3-12) and (3-13) were used

as integration limits. However, in order to preserve the

phase information, a small shear distance is required (Refs

6:41 and 16:2622). For small shear, the modulation fre-

quency w must be low relative to the optical field frequency

such as 25 kilohertz (Ref 4:363). Thus, typically T = 0.04

milliseconds and N can range from unity to a very large num-

ber depending on how fast the phase changes in time. For

simplicity and to check with Wyant's results, let N = 1 so

that Eq. (3-22) becomes

(0) aT bT

[cos(1(2j-3)+O)-cos(T(2j-l)+O) ] (3-23)

Although Eq. (3-23) gives an exact expression for the photon

counts in terms of 0, it is not in a workable form. It is

therefore necessary to expand the cosine functions to obtain
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sj(0) - + bT [cosT(2j-3)-cos'(2j-l)]cosO

-[sin'(2j-3)-sinH-(2j-l) lsinO
k

(3-24)

Equation (3-24) is the expression that will be used to rep-

resent the signal-generated photon counts. For ease in fur-

ther derivations, Eq. (3-24) can be more compactly written

as

s.(0) = aT a.cos0 - sine] (3-25)
j T 27q j js

where

a = cos (2j-3) - cos (2j-l) (3-26)

a = sin (2j-3) - sin (2j-1) (3-27)

With the above signal model completed, the estimation

procedure to obtain 0(r) will be considered next. The "hat"

over O(r) indicates that this is just an estimate of 0, and

the argument "r" indicates that the estimate is in terms of

the observation vector r of Eq. (3-8). The estimate 0(r)

will be performed based on the criteria of Maximum A Pos-

teriori and Maximum Likelihood estimation. Before applying

these criteria to find the phase estimates in Chapters IV,

V, and VI, these concepts will be briefly explained in the

following section.
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Maximum A Posteriori and Maximum Likelihood Estimation
Theories

Estimation of the phase difference 0 measured by a

single detector at a fixed location rd and time t, and of

the actual phases measured over the aperture by two detec-

tor arrays will be made applying the concepts of Maximum A

Posteriori (MAP) and Maximum Likelihood (ML) estimation

theories. The MAP and ML estimates of 0 are those values

5(r) for which the probability of having found the correct 0

after the measurement is made is maximum. This is equiva-

lent to maximizing the a posreriori probability density

function of 0 conditioned on the observations. Let this

a posteriori density be represented by

fe1 (01r) , (3-28)

and let it be maximized by the proper choice of ;(r). With

the condition that the maximum occurs within the range of 0,

maximization is obtained by setting

f (01r)] = 0 (3-29)
-e Ojr -

An equivalent and sometimes more convenient form of Eq.

(3-29) is given by

lnf (PIr)] = 0 (3-30)

By using the Baye's rule substitution

fsir(0Ir) = fr(r) (3-31)
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In Eq. (3-30), the necessary but not sufficient condition

for the MAP estimate is found to be (Ref 14:58)

[lnf r10 (rI) + inf 0 (0)] = 0 (3-32)

MAP

Because 0 is in the argument of a sine function, it is

modulo 27. The ML estimate of the phase is then found by

modeling the a priori density f (0) as uniform within the

range of 0, which is the interval (-TT). The ML estimate

is, therefore, given by (Ref 14:65)

-@[infr10 (rI0)] = 0 (3-33)

ML

Equations (3-32) and (3-33) are the equations for MAP and

ML parameter estimation. The parameter so found is the one

with highest probability of being the true value. There, of

course, may be false solutions, and an error is associated

with each estimate. The errors will be treated in the next

chapters after the solution algorithms have been found.

The problem of estimating 0(r a,t) in the presence of noise

will be addressed next; first, it will be investigated in

the context of a Gaussian problem where the only noise is

due to thermal noise limited detectors, and then in the con-

text of a Poisson problem when the shot noise is the predom-

inant noise source. The approach, however, will be the same

in both Gaussian and Poisson cases: photon counting as the

only alternative under low light level conditions.
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IV Phase Estimation in White Gaussian Noise

When the output field of the interferometer is received

by a detector array with predominant thermal noise, the

noise is adequately modeled by a zero-mean, stationary

white Gaussian process described by the probability density

(Ref 8:360)

f (n) [2ni 2 --1/2 exp[-n 2 /2ao] , (4-1)

n(t) nn

where the variance is given by

2 N0

0 2  _ (4-2)n 2T

The process has a double-sided, flat power spectral density

N
0 over and beyond the spectral region of interest. If the
2

noise is described in the form of a random current, addi-

tive to the current output of the detector, the spectral

density is given by (Ref 8:361)

NO  2kT o- 0 (watts per hertz -- per ohm) (4-3)
2 Re

where k is the Boltzmann constant, T is the operating tem-0

perature and Re is the equivalent resistance of the detec-
N

tor. On a per-ohm basis, - has the units of energy. The

correlation function of the noise process is the inverse

Fourier transform of the power spectral density. For sta-

tionary white noise it is given by

N0

E[n(t)n(t')] = 6(t-t') (4-4)
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On a per-ohm basis, the corrclation fuiction has the units

of power. The first order statistics aie jiven by

E[n(t)] = 0 (4-5)

Before applying the cr-.:cpts of MAP and ML estimation,

it is necessary to obtain the density function of the obser-

vation vector r conditioned on the parameter 0, as required

by Eqs. (3-32) and (3-33). Therefore, the following devel-

opment is made:

Referring to Eqs. (3-14) and (4-6)

E[nj = fT dt E[n(t)]Q j (t) 0 (4-6)

Referring to Eqs. (3-9) and (4-4)

E[n] = dt f dt'E[n(t)n(t')]piJ(t) J (t')

fT T
o[ 2 N

-JT t at - o

T T

N f 2 NOT
S(t)dt 2q2k (4-7)
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Theref! re,

E[rj] = sj(0) (4-8)

NoT

Var[rj] = Var [n.] (4-9)
2q 2 k

In addition to the variance and the mean of r., it is neces-

sary to demonstrate that r. and r are uncorrelated. Thus,j q

cov[rj,rq] = E[(r. - E[rj])(rj - E[r q1)1

= E[(rj - s. (0)) (rq - Sq ())]

= E[nn q] (4-10)

Further evaluating Eq. (4-10)

E[nn q] = f dt f dt'E[n(t)n(t')j]j (t q(t')]

T T

N
f1 dt dt'[6 (t-t'j (t)qt)

T T

N fj (t)q(t)dt = 0, j / q (4-11)

T

Therefore, from Eqs. (3-16), (4-6), and (4-11)

covfrj,rq] = E[njnq] = 0 , j X q , (4-12)
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which implies that r. and r are uncorrelated. The prob-j q

abilistic description of r. given 0 is the description ofJ

n. = r. - s9 (0), which is also Gaussian since n. is a linear

operation on n(t). The conditional density of the observa-

tion can be written as

frj i0 (rj 10) = (2N 0T/2q2k]1/
2

exp i i (4-13)2(N T/2q 2k) I
Because thq observations r. are uncorrelated and condition-J

ally Gaussian, they are independent. Therefore, the obser-

vation vector has a conditional density function given by

kfrlo0(r e) = ' fr (r i le)

j=l rjl

N ]o r exp a__ E - s. (0))N oT j=l r1

(4-14)

Maximum A Posteriori Estimate

The MAP estimate of a parameter 0 observed in noise is

based, as indicated by Eq. (3-32), on the conditional dens-

ity of the observations r given 0, as well as on the

a priori density of e. Considering first the conditional

density of r given 0, the following procedure is developed:
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From Eq. (4-14),

f£o(rl0) L=,_oj

exp N T E (r2 
- 2rs. (0) + s (0))0o j=l 3 3 I

(4-15)

The natural logarithm of Eq. (4-15) is

r k _ 2 2 k 2 22nf inT N T E (r. - 2r.s (0) + s2(0))

N T j jl N T 0 TNTj=l 3 o j=l

g~ 2 k _2k

r + ln (4-16)
NoT j=l 3 2 NoT *

The derivative of Eq. (4-16) with respect to 0 is

s (o) -2gk E ()
oT j=l 3

NT(0

(4-17)

By substituting Eq. (4-17) into Eq. (3-32), a general

expression for the MAP estimate is obtained and is given by

NT 2 [. k k aE [r sj(0)] s (6)+ -L[Ilnf (0)] 0N j=l J(6)
(4-18)

The solution of Eq. (4-18) when the appropriate expressions

for sj (0) and f0 (0) are substituted for yields O(r)IMAp.
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Before doing this, it is interesting to observe what happens

when k becomes very large. It is very simple to prove that

if

k
g(t) = l.i.m. A E gii(t)

k - 0 j=l

k
and h(t) = l.i.m. A E hi4i(t) , (4-19)

k + j=l

where i(t) are orthogonal functions such that

T

i (t) 1

T

and f i(t) .(t) = 0 , i 3 j , (4-20)

k T

then l.i.m. A E gihi = J g(t)h(t)dt (4-21)
k- co j=l

With the help of Eqs. (4-19)-(4-21) and the orthogonal rela-

tion of Eq. (3-10), Eq. (4-18) becomes (tl O as k--)

T

f [r(t) - s (t, ) s(t, )dt + [inf 0 (8)] = 0

(4-22)

Equation (4-22) is the general expression for the MAP esti-

mate 0 of a parameter 8 in a continuous waveform r(t)

observed in white Gaussian noise (Ref 14:275).

Returning to Eq. (4-18), the substitution for s (a)J

given by Eq. (3-25) is made to obtain 0(r) as follows:
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From Eq. (3-25)

(0) 2 + bT [ coso - 6jsinO] . (4-23)
qk 2Tr q j)

Its phase derivative is

(0) = - 2b-T [jsine + ajcos0] . (4-24)

Equation (4-18) can now be written as

2g2 k k I aT bT
NoT = (rj q 2 q [cos - jsinO])

2bT [ajsinO + jcos0])#
2Tq j

+ a [lnf (0)] = 0 (4-25)

In order to simplify notation, let a new function F(e) be

defined as

F() - [lnf (6)) . (4-26)

After some algebraic manipulation of Eq. (4-25), the follow-

ing MAP estimate of 0 is obtained:

Z ) aT + aT

b= T k3 -k-s i n 2 0 ( r ) + frj - j o s 2 ( r )

2~ 2
-Tr .. (i)sin2~r + a B cos2O (r)

nN
S F(O) = 0 , (4-27)
qkb
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where c. and ~are defined by Eqs. (3-26) and (3-27).
2 .

Although Eq. (4-27) defines 3(r) IMAP as is, it is not in

final '-orm. The second summation in Eq. (4-27) vanishes

for all values of k except for k = 2. This was determined

on a computer check and will be used without a rigorous

proof. Therefore, Eq. (4-27) becomes

k aT k .o
E [r - -]c.sinO(r) + E [r. - aT

j=l j qk J j=l [j

mN
q F(O) 0 ; k a 3 (4-28)qkb

whore the constraint that k > 3 is impozed on the estimator

because for k = 1, the two sums vanish.

Now, the conditions for which the second summation in

Eq. (4-27) vanishes are to be investigated. For that to

happen, it is required that

k (a2 2
2 0 (4-29)

j=l

k
and E cj8 = 0 . (4-30)

Substitution of the expressions given by Eqs. (3-26) and

(3-27) for a. and $. into Eqs. (4-29) and (4-30) yields

{ [cos R(2j-3) - cos R(j=].

-[sin 1(2j-3) - sin (2j-)] 2} = 0 , (4-31)
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k
and E { [cos 1(2j-3) - cos "(2j-l)]

j=l

(sin T2M-3) - sin !L(2j-l)]} 0 (4-32)

By carrying out the operations indicated by Eqs. (4-31) a--'

(4-32), it is found that the conditions for a vanishing

term are

k 2iT 2 2 -
E {cos -- (2j-3) + cos k (

j=l

2n
2cos -(2j-2)} = 0 (4-33)

kk

k 2Tr 2 2 -
and E {sin -R-(2j-3 ) + sin k-(2j-1)

j=l

2 2sin 2r(2j-2)} 0 (4-34)

The question is, for what values of k do Eqs. (4-33) and

(4-34) hold? The easiest way to find out is by computing

the summations for a number of k's. This was done on the

computer for k = 1 to k = 28 with the assuring result that

only for k = 2 both sums do not equal zero. It was also

observed (and will be used without a rigorous proof) that

k k
E .. = Z 8. = 0 (4-35)

j=l 1 j=l J

for all k.

Therefore, Eq. (4-28) simplifies even further to yield the

final result of the discrete MAP estimate of 0 as
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k k
E a.r.sin0 (r) + E 8-r.cos0 (r)

j=1 3 3 j=l3 -

nN
- F(0) 0 , k Z 3 (4-36)

qkb

For the particular case when the phase e is a Gaussian ran-

dom variable with variance less than 0.8 rad 2 , the density

function is practically given by

f (0) [2Tr2]_ /2exp[-0 2/2o2] , (4-37)

in the interval (-T,Tr). Then,

8e
F(O) - -L[lnf (0)] = - --0 (4-38)

0

By letting 0 = 0(r), Eq. (4-36) becomes

qkba
2

O(r) - 7TN

k k
E 7 .r.cosO(r) - a a.r.sin0(r)} . (4-39)

j=1 I j=l 3 -

Equation (4-39) is the MAP estimate of a Gaussian phase 0 in

terms of discrete observations. The MAP estimate is,
N

therefore, a function of the detector noise -f given by Eq.

(4-3), the variance a2 of the random phase and the amplitude

b of the signal. Equation (4-39) is of the form

x = Ucosx + Vsinx (4-40)

and cannot be reduced any further. It can be implemented

in the form of a photon processor as shown in Figure 6.

31



GAIN

i1 GAIN CONTROL

--) 2q k 2

Fig 6. Photon Count Processor for MAP Estimation of 0

Equation (4-40) can, however, be solved numerically on the

computer. An effective way is to expand the sine and

cosine functions into series and solve the resulting poly-

nomial iteratively as a predictor-corrector algorithm. A

fifth order expansion (three terms in each function) results

in reasonably good solutions up to 0.7 radians, but it gives

gross errors for higher phase angles. On the other hand, a

seventh order expansion (four terms in each function) proved

to give very accurate results regardless of the phase value.

Thus, using four terms in the expansion of the trionometric

functions of Eq. (4-40) (Ref 12:472) , the following poly-

nomial is obtained:
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5040U + 5040(V-l)x - 2520Ux - 840Vx 3

+ 21OUx 4 + 42Vx 5 _ 7Ux 6 
- Vx 7 = 0 (4-41)

Equation (4-41) has seven roots. It was solved using a

subroutinc from the International Mathematical and Statisti-

cal Library (IMSL) package available for use with the CDC

6600/Cyber 74 computer system at the Air Force Institute of

Technology. The real roots so found that satisfy Eq. (4-40)

are the estimator solutions. It was found from several

tests (no proof included) that the lowest root always gives

the solution with the smallest error, and is therefore the

sought MAP estimate. As an example, the solution to

x = 11.23108494624 cosx

-38.93776905131 sinx (4-42)

taken from an actual simulation run, is, using single pre-

cision,

x = 0.2740523040524 radians (4-43)

with a discrepancy of

7.920348821244E-9 radians , (4-44)

which is an extremely accurate result.

For the purpose of comparison, it is easily found

using Eq. (4-22) that the MAP phase estimate from a continu-

ous measurement is (Refs 11:189 and 15:129)
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2bj 2 T
N 2o f r(t)cos w)t dt cos0

0 0 T

r(t)sin wt dt]sinO (4-45)

In order to give an idea of the forms assumed by Eq.

(4-39) for a specified number of observations, a few illus-

trative examples are given in Table I. Finally, in order

not to disrupt the continuity of the present developments,

verification of Eq. (4-39) through computer simulation is

reserved for the last section of this chapter.

Maximum Likelihood Estimate

The ML estimate of a parameter 6 observed in noise is

based on the conditional density of the observations given 6

only. This is performed when the statistical description of

theta is not available (Ref 14:65). It is reasonable to

assume that 6 is equally likely to occur in the interval

(-ir) not having any other a priori information. The

density of 6 is therefore modeled as

1
f 0 (Z) - -7 < 7

= 0 , elsewhere , (4-46)

with zero mean value and variance 2 /3. From Eq. (4-46), it
2.

is found that F(0) = 0 (equivalent to a large ae in Eq.

(4-37)), and the ML estimate is defined by Eq. (3-33).
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TABLE I

Examples of the Maximum A Posteriori Phase
Estimator Form for k Observations

k 0(r r k )

3 3/3 CO () 3 snr

2-- (2r-rr 3 )kcos(r) - (r2 -r)k sin6 (r)

4 ( - 2-o  04 1- (r -r )k cos 3(r) /2(r 2 -r 4 )k osinb(r)

-i--- 12(r -r )r 2 3 r +r Ik cos (r)

6
- 3(r 2 +r 3 -r 5 -r 6 )kosin6(r)

[0r(t)eoswtdt]kpCS - [fO r(t) sintwtdt]kpsinG

2
Aqkb%

k0
2o

kA 2b0

p N
0
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Equation (4-36) then becomes

k k
Z a.r sin0(r) + 2: P.r.cos6(r) = 0

j l 33r--inO 33--

for k > 3 (4-47)

Finally, Eq. (4-47) reduces to kl
t(r) ML = t. , k > 3 (4-48)

MLE o.r.

Equation (4-48) is the ML estimate of the phase based on

discrete observations. The condition that k 3 is main-

tained since for k = 1, the tangent of 0(r) is not defined

(zero divided by zero) and for k = 2 the summations in Eqs.

(4-29), (4-30), and (4-35) do not equal zero. Again for

comparison, as k becomes very large and with F(0) = 0, Eq.

(4-45) gives (Ref 15:129)

- T r(t) cos wt dt

e M = tan-l[OT j(4-49)
ML r(t) sin wt dt

0

Equation (4-49) is the ML phase e:timate made from a con-

tinuous measurement.

Equation (4-48) takes on different forms for each value

of k. In order to visualize how it changes, a few illustra-

tive examples are given in Table II. These results agree

with the findings of Wyant (Ref 16:264), which inspired the

work of this thesis, although he assumed shot noise instead.
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TABLE TI

Examples of the Maximum Likelihood Phase
Estimator Form for k Observations

k tanO(r 1 .. rk

/32r1- r 2-r 3
3 r 2 -r 3

r 2 -r 4

6 2(rl-r 4 ) + r 2 -r 3 -r 5 +r 6
3 r2+r 3-r -r6

0.3129(r-r) + 0.2980(r -r,0-r2+r
111 2 1 22

0.0967(r 2 +r1 0-r1 2-r2 0 ) + 0.1839(r 3 +r 9 -r 1 3 -r 1 9

+0. 2531(r 3 -r 9 -r 1 3 +r 1 9 ) + 0.1839(r 4 -r 8 -r 1 9 +r 1 8)
20 +0.2531(r9 +r 8 -r 1 4 -r 1 8 ) + 0.2976(r 5 +r 7-r 1 5-r 1 7 .

+0.0967(r 5-r7 -r1 5 +r17 )

+0.3129(r 6-r16

T r(t)cos wt dt

0
T r(t)sin wt dt

0

37



He originally noted that k ! 3, and proposed four inte-

grations. The result corresponds to the entry for k = 4 in

Table II.

Before proceeding to the algorithm verification, it is

necessary to determine (or predict) how good an estimate

can be obtained from Eqs. (4-36) and (4-48). Therefore,

the question of performance remains to be addressed.

The conditions for which photon counting yields accu-

rate estimates are to be investigated in the next sections.

Performance of the Estimators

One measure of performance of an estimator is generally

given by the variance of the estimate with respect to the

true value. This measure of performance is known as the

Mean-Square Error (MSE), and in the case of unbiased esti-

mates (zero-wean errors), it is the variance of the error

itself.

For nonlinear estimates, the MS error is not simple to

compute, and a lower bound on the error is sought instead.

The most widely used bound is the one given by the Cramer-

Rao inequality (Ref 14:66-73). An approximate MS error

and the Cramer-Rao (lower) Bound (CRB) will be computed in

this paper and a comparison will be made to establish the

validity of the CRB bound to measure the performance of the

joint estimation problem addressed in Chapter VI.

Mean-Square Error. The MSE of an estimate is defined

as the expected value of the square error between the
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eLstimate O(r) and the actual value of 0 (Refs 14:64, 17:412).

Let the error be defined as

Cr A (0 - 0(r)) (4-50)

The exact MSE is then given by (Ref 14:56)

E[c2] = f dO fdr(O - 6(r))2f (0,r) (4-51)
-O -Q

The joint density is given by the product frJO (rIO)f9 (0).

For the MAP estimate, 0(r) and the two densities are given

by Eqs. (4-39), (4-14), and (4-37). For the ML estimate,

6(r) and the densities are given by Eqs. (4-48), (4-14), and

(4-46). The direct computation of Eq. (4-51) is difficult

to perform. However, an indirect computation suggested by

Sage and Melsa (Ref 11:189) is performed here for discrete

observations and yields a result that depends on the energy

of the system for large signal-to-noise ratios. These deri-

vations are developed in the following sections.

The MAP-MS Estimation Error. The MAP estimate of 0

when the a priori density is Gaussian is, from Eq. (4-36),

k k
0(r) = - X Bjrjk cosO(r) - Z a r.k sin0(r)

j=l 0 j=l 0Jo

(4-52)

where, from Table I,

A qkb 
2

ko N (4-53)
0
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If the expression for r. given by Eq. (3-16) is substitutedJ

into Eq. (4-53), then the MAP estimate becomes, in terms of

signal and noise,

k k
(r) = - E 6jsj (0)k cosO(r) - Z 3.n.k cos0(r)

j=l 0 j=l 3 -

k k
E a jsj(6)kosinO(r) - Z a.n.k sin0(r)

j=l - j=l 3 ) 0

(4-54)

where s. (0) is given by Eq. (3-25). After some processing

of Eq. (4-54), the estimate becomes

I aT k
6(r) - k { cos0(r) + o.sine(r)}

qk 0 j=l 

bT k 2k 0 {jajcosO cosO(r) - 6.sin6 cos0(r)
j=l

2A+ aicos0 sinS(r) - a jsine sin6(r)}

k
- k E { .n.cosg (r) + a .n.sin6(r) } (4-55)

j=l 33 33

The equalities of Eqs. (4-30) and (4-35) can now be substi-
k k

tuted into Eq. (4-55). By setting E a.. = E. =
k j=lj j=l 3
k j=13 0 and expanding the products of sin0.cos )(r) andj=l J

cose'sin6(r) into sums, Eq. (4-55) becomes
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bT k 2
(r) 4qko E { .[sin(0 + 0(r)) + sin(0 - 0(r))]

- 4lq oj=1 3

- a 2 [sin(0 + 0 (r)) - sin(0 - 0(r)

k
- k 0 {Snjcos8(r) + a 3n sin0(r) . (4-56)

The error £r defined in Eq. (4-50) is expected to be small;

otherwise, the estimate is meaningless. To ins, e this

condition, the approximation

sin(0 - c(r)) Sr (4-57)

can be used in Eq. (4-56). By observing from Eq. (4-9)
k 2 k 2

that E a. = E . 0, Eq. (4-56) can be transformed
j=l D j=i 3

to yield an expression for the error; so, it becomes

2N
_ o 0 27qk

r 2 Yk 0 (r) + bT Yk
E C Fa 0

k
E {n.n.cosO(r) - a .n.sin0(r)} , (4-58)

j=l 3 -

where new parameters have been defined as

A k 2-
Yk [k E a (4-59)j=l e

which is just a number that depends on the particular value

of k, and
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E A b2T
Ea 2 T t t tl+T , (4-60)

which is the ac component of the energy in the interval

(tl,t1 +T) of the signal of Eq. (2-9).

The first check to be made on the estimate 0(r) using

Eq. (4-58) is that for bias (Ref 17:404) Thus, by recall-

ing from Eq. (4-7) that E[n] = 0, the conditional expecta-

tion of the error given 0 is

E[r 2 Yk E[0(3)10] (4-61)

a 0

Solving for E[0(r)10] and noticing that E[01] = 0, Eq.

(4-61) gives

E[0(r) 0] = 0[l + T
2 Noyk/Ea ] -  (462)

Thus, the conditional expected value of 0(r) is a scaled

version of the true value of 0. The estimate approaches

the true value as the signal to noise energy ratio in

(tl,t1+T), Ea/NoI is made very large, which is expected when

the measurement is made in the absence of noise. Thus, in

the limiting case, and only in that case,

lim E[0(r)10] = 0 , (4-63)
E aIN -*

and the MAP phase estimate is asymptotically unbiased (Ref

17:404).
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The second computation to be made from c is that of

r

the MS error between 6(r) and 0. The MS error is defined

2
as the expected value of cr The first order statistics

needed to asymptotically characterize the MSE are

E[] = 0 (4-64)

E[0(r)] = E[E[g(r)18]] = 0 (4-65)

E[ r ] = E[0] - E[0(r)] = 0 (4-66)

In such a case, large Ea/NIo , the MS error is both the vari-

ance of 5(r) and the variance of cr which will be defined

asymptotically as

V (e) - lim V (Cr)
a r No-o

- lim E[c] (4-67)
E /N r

a o

From Eq. (4-58) the second order moment of Er is given by

E[E 2] = [2 N Y/Ea2 ]1 E[(6(r)) 2]r o k d

+ [2fqkYk/bT] 2
k

E[{ E (S.n.cosO(r) + a.n.sinO(r))} 2 ] , (4-68)
j=l 3 JJ -

where the identity L[n.] = 0 was used. The second expecta-

tion term in Eq. (4-68) reduces to

N T k
o 2

2q k j=1
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where use of the identities of Eqs. (4-8), (4-29) and (4-30)

was made. Finally, by using Eqs. (4-59) and (4-60), Eq.

(4-68) becomes

2 2 2 2 2
E[Er] = [Noyk /Ea ]  E[(()) ]

+ 72NoYk/Ea (4-69)

Equation (4-69) is the MS error of the phase estimate. The

difficulty with this expression is that E[(6(r)) 2] must be

evaluated from the density function of Eq. (4-14) (Ref 14:64).

However, if the ratio E a/N is made very large, the error

variance becomes, from Eq. (4-67)

(2No~ k

a r Ea (4-70)

It will be beneficial to inquire what the effect of yk in

Eq. (4-70) is as k varies from k = 3 to the limit where it

becomes very large. A plot of Yk versus k for large signal-

to-noise ratio (SNR) is shown in Figure 7 as a normalized

variance

V( r)Ea

aTr a2N

0

k 2-1
A plot of ykk; that is, [ Z a.] , versus k is shown in

j=l
Figure 8 to show how fast the (normalized) variance, k'

approaches linearity as k increases. From Figure 7 it is

observed that yk tends to stabilize at around 0.051 as k

becomes large. This corresponds to the asymptotic slope of

the curve in Figure 8. Thus, equation (4-70) becomes
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0.0517 N
l.i.m. V (Cr) E o

k a r Ea

N02Ea (4-71)

The MS error of a phase estimate for large signal-to-noise

energy ratio in (tl,t1 +T) is just a multiple of the inverse

SNR scaled by a factor that depends on the number of the

observation interval subdivisions, k. A few examples to

illustrate Eq. (4-70) are given in Table III.

The ML-MS Estimation Error. The same procedure used

in the previous section to determine the MAP-MS error can be

used for the ML case. Using Eq. (4-48) as a starting point

and substituting for r. given by Eq. (3-16), it is found thatJ

the ML estimate is unconditionally unbiased; that is,

E[O(re)IO] = 0 (4-72)

2This is easy to verify by observing that for ML, a = . in

the MAP equations. Thus, Eq. (4-69) reduces to Eq. (4-72)

without any SNR restrictions. Completion of the procedure

yields an unconditional error variance given by

V a(E )  = Ea2 0Y (4-73)

2
Again this is easily verified by letting 2 = in Eq.

(4-69). A different procedure, however, carried out by

Raemer (Ref 9:263,458) to compute directly the Root Mean-

Square (RMS) error defined as
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TABLE III

Examples of the MAP Phase Estimator
Error Variance for Large SNR

k Va(E r )

42 No/2 /2
27 Ea - 1.462 E'a a

72 NO/2 _NO/2

8 F 0/ - 1.2337 0
8 E aE aa a

2 2No/2No/2
5 2iT2  N0/2 - 1.1427

17.27 E Ea a

2NO/2 NO/2

9 E - 1.0966 E
9 Ea Ea

2 2 No/2 N /2
15 - 1.0147

1519.45 Ea Ea

2r2  No/ NO/2

No/2 NO/2

E E
a a

48



A a ]1/2 k (4-74)£ - [ar (r -

where 0(-) is as in Eq. (4-49) did show a SNR dependence of

the ML estimate. By expanding the arc tangent in Eq. (4-49),

Raemer obtained similar results with the condition of a

large Ea/N ratio. Specifically,

2 1 1 0 (4-75)

4 PiBnT 2Ea

where P. and Bn were defined parameters of the signal and1

noise treated as narrowband processes. Therefore, the MAP

and ML error variance are the same and approach zero when

the signal is strong relative to the receiver noise. Thus,

Table III is equally an ML comparison of the error variance

in terms of the observations k. To show graphically the

relative improvement of entries in Table III, define in

logarithmic terms

A ~ V a(E)Ik=2
I mp(dB) A 10 log - Var ( Cr ) k

ar(£r )

= 10 log (Y3/¥ k )  . (4-76)

The relative improvement in decibels (dB) of the error c r

with respect to the error in three subintervals is shown

in Figure 9.

The important conclusion of this section is that in

the presence of thermal (receiver) noise, the error in the

phase estimate is strictly a function of the signal-to-noise
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ratio. The ideal procedure is to perform a current measure-

ment (k = -), for which the error is the inverse SNR multi-

plied by a factor of 1. The procedure is suboptimal if

discrete photon counts are made (k < -), for which case the

same error is scaled by an appropriate factor determined by

k. Referring tj the curve in Figure 9, the continuous cur-

rent-based estimate offers an improvement of 1.65 dB over

the discrete photon count based on only k = 3 integrations.

Notice, however, that if the hypothetical CCD detectors can

provide 15 or more integrations over T, then the improve-

ment of a continuous measurement over photon counting is

only 0.064 dB. Thus, provided the SNR restrictions are met,

the photon counting algorithms offer a viable alternative

for phase estimation when the signal levels are low.

Considering the extremes, when the SNR is low, neither

a current measuremenL nor a photon count will yield an accu-

rate phase estimate. On the other hand, in the absence of

noise, the error is zero (E a/N = W) as expected from a

perfect measurement. This is easily proven by substituting

r. = s. (0), given by Eq. (4-23), back into Eqs. (4-36)3 3

(with F(O) = 0) or (4-48). With the help of Eqs. (4-29),

(4-30), and (4-35) the result obtained is 0(r) = 0 as

expected. This was also verified computationally.

The level of SNR to assure with a given certainty that

an estimate is within a specified phase range has been

addressed in the literature and will not be repeated here
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(Ref 9:266). Instead, a general observation will be made

from the results of the computer simulation discussed at

the end of this chapter.

In order to complete the error analysis, it is desir-

able to inquire what the minimum MS error is, and the con-

ditions under which it is attained. A good description is

given by the Cramer-Rao bound on the minimum MSE although

other bounds are also available (Ref 14:71). The Cramer-

Rao approach will be considered in the next section.

Cramer-Rao Lower Bound on the Minimum MS Error. The

lower limit on the value that the minimum MS error (M.MSE)

can have can be calculated without actually having to know

the estimate. For the case of an unbiased estimate, the

CRB bound is given by (Ref 14:72)

CRB = {E((- lnfr,O (rO))2

= -{E[ - inf r,()]}- 1  (4-77)
2 lnf _

For the case of a biased non-random parameter, a bound

expression is given by Van Trees (Ref 14:147).

In order to use Eq. (4-77) in the problem at hand, it

is necessary to work with the large SNR restriction, for

which the estimate L(r) was shown to be asymptotically

unbiased. Thus, the bound ;- given by

V a(C) CRB , E a/N - 0 (4-78)

52



Before letting the SNR become very large let

V (2 _ lnf (rio) + lnf (O)] -ar r > rio

(4-79)

For the observation in white Gaussian noise, it is conven-

ient to specialize Eq. (4-79) further before considering

the phase problem. From Eq. (4-17)

2 k
a lnf (ri - 2q k r r-- ~ = T . - s (0)
6 r - NoT j=l 0 s

2q 2 k k 6

NoT j=l -

(4-80)

The second derivative of Eq. (4-80) with respect to 0 is

D2 2q2k k 2
lnf (rH) - r ([r] - s.()] - (0)

(3Sj (0)) 2

- . (4-81)

The CRB bound then becomes

22( k F s.(O)) (2CRB N T ZE [(rj - (O o2o j=l L

( 2] + E[2 lnf0  J (4-82)

By observing that

53



r. - s.(O) n.

and

E[nj] = 0

the MAP error variance becomes in terms of the CRB bound

I2
(2 

E [ F 1s) 1

Va (r) > NOT E ( / E0 F( k 3

for Ea /NO  (4-83)

Without the large SNR restriction, Eq. (4-83) is a general

expression for the lower bound on the error variance of any
2

unbiased estimate (Ref 17:412). The factor T in Eq. (4-83)

comes from the use of the orthogonal functions defined by

Eqs. (3-7) and (3-9). In the limit as k becomes very large,

Eq. (4-83) becomes

> (T 2 (to)2a-r - a dt - Ele F(6)]I

0

for Ea/N O - 0, (4-84)

where use of Eqs. (3-10) and (4-21) was made. This is the

result for the bound on the error of the estimate of a

parameter measured in a continuous waveform regardless of

algorithmic form (Ref 14:275). Returning to Eq. (4-83),

from Eq. (4-24),

2 bT k 2
sj()] (bT)2 j [asinO + 8jsin0]

J j=1

(4-85)
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By use of Eq. (4-85) in Eq. (4-83), the bound becomes

R 2 2k (sin + cosO] 2 _ 1

CRB NOT 27q j=l [  - E[- F(0)]

j2Tk (b)2 k 2 20 + 2 2

Z [C2sin +6cos20 + aj jsin20]
N 0 -ff j=l 3

E[-- F(0)] k a 3 (4-86)

Invoking the identities of Eqs. (4-29) and (4-30) one more

time, Eq. (4-86) can be simplified to

I kb 2 T k 2> (C ) E - E[ L F(6)]
a r 14 2No/2 j=l 3 Do

E a~S 2 aNoyk - E[ F(0)] , k > 3

for E a/N 0 o (4-87)

Equation (4-87) is the lower bound on the MS error in the

estimate of 0 given by the Cramer-Rao inequality. It is a

function of the ac component of the signal energy Ea, the

noise energy N and the observation subinterval k repre-

sented by yk* It is also a function of the statistical

description of 0 represented by the density f0 (0). In the

particular case where the phase is modeled as a Gaussian

random variable with the density given by Eq. (4-37), then
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E F(0)I2 (4-88)
a8

The bound on the error variance becomes

Va E a [] +

2 k 2

> 2 0 2Nk 2' k > 3

SNoYk e + Ea e

for Ea/No - (4-89)

In the limiting case as k becomes very large, 1 /yk 19.6

(see p. 44), so

l.i.m. Va (r) _T [Eo +

o2N

k- -2

N + 2E aNo +2aO e

for Ea/N °  (4-90)

Equation (4-90) gives the MAP lower bound on the error var-

iance based on a continuous measurement. Finally, when the

large SNR condition is used, Eq. (4-90) becomes

N0
lim {l.i.m. V (C*r)} 2 (4-91)
En/No k - a

This is precisely the result given by Eq. (4-71). There-

fore, as the term Ea/N grows unbounded, the true error
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variance approaches the CRB with equality; the MAP estimates

6(r) and 0 are asymptotically efficient (Ref 14:276). Thus,

the Cramer-Rao bounds are also given in Table III. The

same observation is made for the ML-CRB on the error vari-

ance. For the ML-CRB, from Eq. (4-46),

a
E[T F(0)] = 0 , (4-92)

and Eq. (4-77) reduces to (Ref 14:66)

a2  -i
CRB = -{E[-D lnf (r (4-93)

30 2  r*f -~Q]

Therefore the bound for the ML error is, from Eq. (4-89) as

2
0, gets large,

'IT2NoY

Va >r Ea k 3 , (4-94)
a

or from Eq. (4-90),

N
l.i.m. Va (Er 0 (4-95)
k - co ar 2 a

From Eq. (4-90) it is observed that when the signal is

2
weak, the error is limited by the variance o0. But this is

not the same result expressed by Eq. (4-69), and therefore

the Cramer-Rao bound becomes meaningless in such a case.

In conclusion, the analysis made in the Gaussian noise

context indicates that under thermal noise limited condi-

tions, measurement of a phasefront cannot be made accurately

except for large signal-to-noise ratios. For low light
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levels conforming to this restriction, the photon counting

technique is quite acceptable, but when the signal level

permits, a current measurement is most appropriate. At

this point, a verification of the algorithms derived in

Eqs. (4-39) and (4-48), as well as a performance evaluation,

is overdue. This was done in a computer simulation, and is

presented in the following section.

Verification of the MAP and ML Estimators

A simulation program to test Eqs. (4-39) and (4-48) was

written in FORTRAN and run on the CDC 6600 computer system.

After the parameters for the simulation have been input,

the program generates the signal counts s.(0), computedJ

from the true phase input and Eq. (3-24), and adds white

Gaussian noise counts n., computed from

P. N T 1/2
n2 k [- , (4-96)

where P. is a number from a zero-mean, unit-variance,
3

Gaussian random number sequence, generated using a subrou-

tine from the IMSL library. The program then estimates the

phase based on the noise-corrupted measurements r. using]

Eqs. (4-39), (4-41) and (4-48) as needed.

The parameters chosen for this simulation are a 25

kilohertz modulation frequency, a 0.04 millisecond observa-

tion period (required by the choice of N = 1 in Eq. (3-22))

and a signal level in the order of 1 microamp. Although

the algorithm is independent of signal level (also verified

58



by using 10 milliamps) this number was entered to simulate

the output of a detector under low signal levels. The num--
*8

ber of counts r. thus generated are of the order of 108
J

photoelectrons and below. In the 0.04 millisecond observa-

tion time used, this corresponds to less than 1013 photo-

electrons per second, a rate which is in the category of

low photon coherence. The simulation results are contained

in Figures 10-19.

Simulation Results for the MAP Estimator. The MAP

estimator simulation is a series of tests performed on Eq.

(4-39) to verify its performance as an estimator. In these

tests, Eq. (4-39) was used to estimate a known phase given

different signal-to-noise ratios following the procedure

outlined in the previous section. The tests were then

repeated to estimate different phase angles at a fixed SNR.

Several such tests were performed and the results presented

here are typical. The first set is shown in Figure 10.

These curves were obtained using a phase variance of 0.8

rad 2 , chosen as the safe maximum deviation for which Eq.

(4-38) can be used to obtain Eq. (4-39); and using a test

phase of 0.5234 radians (30°), which seemed a logical choice.

The five curves shown are the phase estimates plotted as a

function of the algorithmic form used (determined by k) for

the indicated signal-to-noise ratios (10 dB to 30 dB). The

same noise counts were used in each curve.

From this and other tests performed (by changing the

noise seed to generate P.), it is observed that the estimate
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deviations are larger for lower values of k, but improve as

the SNR increases. Thus, for large SNR's, consider that to

be 50 (17 dB) and abcve, the benefit of the simpler algo-

rithm forms in Table I can be used to an advantage (less

computation time). The same is true for the ML approach

(see Table II). The variance of these estimates is shown

in Figure 11.

Figure 12 is a plot of the estimates of five phase

angles obtained with a SNR of 17 dB. They range from 0.2

radians (11.50) to 1.4 radians (800). No significant dif-

ferences in the pattern are observed. A small discrepancy,

however, had to be fixed in this particular plot; the phase

estimate 6(r 4 ) for 0 = 1.4 radians made by using four sub-

intervals had a negative sign. This occurred both in the

MAP and the ML test. However, it cannot be inferred that

the estimator is more sensitive as the phase becomes larger.

The variance of these estimates is shown in Figure 13. Both

Figures 11 and 13 seem 1o .ifirm the theoretical prediction

of Figure 7: improve, performance as k (and SNR) - -.

A test to check the effect of a smaller a priori phase

22
variance ao2 was also run and is shown in Figure 14. The

variance was chosen to be 0.274 rad 2 (the square of the

test phase). A slight improvement was obtained with respect

to the curves of Figure 10. The comparison can be made more

easily by looking at the estimates variance shown in Figure

15. Here, the improvement is more obvious for the lower

values of k, and in particular for the 10 dB curve; that is,
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for the estimates obtained with the smaller SNR used. This

seems to confirm the discussion pertaining to Eq. (4-90),

that estimates from noisy measurements are more dependent

on the a priori information, a useful characteristic of the MAP

estimator. Similar tests were also run to verify the ML

algorithms, and are discussed in the following section.

Simulation Results for the ML Estimator. The ML esti-

mator simulation is a series of tests performed on Eq.

(4-48), similar to the ones performed on the MAP estimator.

The main difference lies in the straightforward computation

given by the inverse tangent form of Eq. (4-48). Here, no

a priori information (phase variance) is used. The results,

shown in Figures 16-19, are surprisingly close to the MAP

results already discussed, especially as k increases. Thus,

the ML approach can be used to advantage when the signal-

to-noise ratios are high enough to perform nearly as well as

the MAP estimator. From these results, Figures 10-19, it

can be seen that high enough may be 10 dB and higher. Thus,

given SNR's better than 10 dB, the ML algorithm of Eq. (4-48)

seems to be a good estimator. Its use, when warranted, has

the advantage of avoiding solving equations of the form of

Eq. (4-41) which are time consuming. The MAP estimator,

on the other hand, is more useful under noisy conditions,

where the estimator weights more heavily on the a priori

information.

In the analysis presented in this chapter, the ultimate

noise limited condition was assumed: that of the detector.
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In reality, and particularly for low light levels, when the

signal-to-thermal noise energy ratio is indeed very large

as may be the case of the CC devices, then the effects of

the signal shot noise predominate. Therefore, it is neces-

sary to consider the predominant shot noise case in order

to have a more complete analysis. When the phase 0 is the

only random parameter in Eq. (2-9) and consequently in Eq.

(4-23), the problem can be treated in the Poisson context.

An explicit use of the Poisson statistical description of

shot noise, ignored by Wyant, will be the basis of the

developments of the next chapter.
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V Phase Estimation in Shot Noise

When detector thermal noise is negligible, the process

is signal shot noise limited. For a multimode field (Ref 2:

87-94, 212), the process is well modeled as having condi-

tionally Poisson statistics. When the field is single mode,

then it is governed by Laquerre (Ref 2:304) statistics and

will not be considered here. The analysis is identical to

the one made in Chapter IV after Eqs. (3-32) and (3-33).

For multimode detection, the counts r. in the observation
3

interval (tl,t 1 +T) are independent and Poisson distributed

when conditioned on the field intensity (Ref 2:295). The

density function of the observables in (t.,tj+T) conditioned

on 0 is the probability density of the events (photons

received), assuming that all the events equal the observa-

tions (photoelectrons produced) in each observation sub-

interval T. Therefore, the density function of the shot

process is
r.

=j3 ej f lf (5-1)

P [N T =rr = 
] !-- r j l0

where +T

E[r(t)] dt (5-2)ij = q__ _5-2

ti

The observation r(t) has the form

r(t) = s(t,O) + q( sn(t) + Xb + xdW )  (5-3)
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where the noise count (photon) rates have the following

statistics: (1) the signal shot noise A (t) is a non-sn

stationary, zero-mean process with covariance X(t)6(t-t');

(2) the background is assumed constant and infinite with

correlation function N ob6(r a-r ')6(t-t') and a stationary

count rate Xb = N obB D /hf , where Nob is the spectral

background noise strength, B is the optical bandwidth and

D is the number of spatial modes (Ref 2:212,213,298); and

(3) the stationary detector dark current has dc content Ad

and covariance XdS(t-t').

Maximum A Posteriori and Maximum Likelihood Estimates

With the above conditions established, the MAP and ML

phase estimates can be found using Eq. (5-1) as the starting

point. Thus, Eq. (5-1) becomes

r.
(s (0) + (Xb+Ad)T/k) 3

frjle(rjO) rj b!
I

exp[-(sj e) + (Xb+Xd)T/k)] (5-4)

In a manner analogous to Eq. (4-14), the observation vector

r has a conditional density function given by

kf i (rJ0) = H f
= j=l rji0

k (s.(0) + (Ab+Ad)T/k) i

lj=l r3

k
exp[- Z (s (0) + (Ab+Ad)T/k]. (5-5)

j=l J
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Unlike Eq. (4-14), Eq. (5-5) contains a constant noise term

(Xb+Xd)T/k that represents deviation from ideal behavior.

Use of Eq. (5-5) in Eq. (3-32) yields the MAP estimator

equation

k r. T.(C)

s )E( -- s(t,O)dt

j=l si(O bjXd-Tk -

+ F(O) 0 , (5-6)

where the substitution

k Ds. (6) k f D s(t,0) 1 f as(t, )
jE Do E~/ DO q q fJ dt

j= (5-7)

and the definition of Eq. (4-26) were used.

Use of Eqs. (3-25)-(3-27) and (4-24) in Eq. (5-6) with

T
f s(t,O)dt = 0, where s(t,O) is given by Eq. (2-9),

yields the MAP estimate

k [cjsinb(r)+ cosO(r)]k/2Z r . - -

j=l 3[a cos6(r)- sinb(r)]k/2u+(a+ib+id)/b

- F(O) 0 , (5-8)

where the substitution (Ref 2:113) (ib+id) = q(Ab+A d ) was

made to convert constant photon count rates to dc noise

current. The ratio

A b (5-9)

-a + (59b
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is the frjnge visibility and depends on the radiance of the

source. The dark current id is usually negligible.

Equation (5-8) is the MAP discrete estimator of phase

measured under Poisson shot noise conditions. It can be

reduced further under special conditions, but before

specializing its results and following the practice of

previous sections, Eqs. (5-6) and (5-8) can be put in the

form of continuous waveform equations. Thus, in the limit

as k becomes very large, Eq. (5-6) becomes (Ref 2:298)

T T
1 r(t) 3s(t,O) dt- 1 f s(t,) d t
q f s(t,) + (ib+id) q0 q11

+ F(0) 0 , (5-10)

and the MAP phase estimator of Eq. (5-8) becomes

T
1 r(t)cos(t+9) dt - F(8) 0 . (5-11)q f sin(wt+6') + (a+ib+id)/b

The first case to be considered is when the fringe

visibility is approximately unity. This is more or less

what is found from the output of the shearing interferometer,

as can be determined from Eqs. (2-10) and (2-11). Thus,

from these two equations, a/b = 0.711; so, (a+ib) b, con-

sidering the presence of a small background current. Thus,

by setting (a+ib+id)/b = 1, Eq. (5-8) can be transformed

using simple trigonometric identities (Ref 11:225-241) into
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k -1 2 2 r)

Z r.{tan[sin-(L./Xt. + ) -

-1
+ 2T/[ (ajsinO (r) + 2.cosO (r) )/k]]

- F(O) = 0

for y = d - 1

and y >> id , (5-12)

where the substitution

ta-1 -1 r 2

tan- (C2 = sin (ajIa.2 + 2) (5-13)

was made to avoid dividing by zero as some 2.'s are found to

be. Equation (5-12) is therefore the discrete MAP phase

estimator given Poisson shot noise conditions and equal

amplitude dc and ac components. It is noteworthy to observe

that if k is large, the second term in Eq. (5-12) can be

neglected so the estimate becomes approximately

k l'1 2 2
E r.cot[sin (a / + ) - r)

j~l 3

- F(O) = 0 , k large (5-14)

Finally as k becomes very large, from Eq. (5-11), the con-

tinuous measurement estimate is found to be
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f r2(t)cot(j + 7 -)dt - q F(O) = 0

0

for y + id >1, y d (5-15)

The second case to be considered is when (a+ib+id) 0, dc

components blocked (capacitively perhaps). For this case,

Eq. (5-8) becomes

k a.sin6(r) + 2.cosO(r)
Y r. - (P) = 0 (5-16)

j=l a jcosu (r) - 2jsinG (r)

Equation (5-16) can be also transformed using simple trigo-

nometric identities into

k -2 ,2
E rtan[sin-(8j/a. + bj) + 0(r)]

j=l 3

- F(0) 0 , dc blocked. (5-17)

This is the discrete IthL phase estimator given Poisson shot

noise conditions and dc components (signal and noise)

blocked. In the limit as k becomes large, the continuous

measurement estimators found to be from Eq. (5-11)

f r(t)cot(wt + 0)dt - q F(0) 0

0

dc blocked (5-18)

The last case to be considered is for a very low fringe

visibility such that (a+ib) > > b. This condition is given
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65

under a strong infinite background competing with the source

(target), and is referred to as background limited. Thus,

for backqround limited conditions,

(a+ib+id)/b >> [ajcosf(r) - 6.sinG)(r)]k/27i

and Eq. (5-8) becomes

k
) r. [.sin (r) + )jcos0 (r)]

2l (ai b+id)
- ka~b dkb= 0 (5-19)

Equation (5-19) is of the same form as Eq. (4-36) with

the term 2- (a+ib+i)/kb in place of N 0o/gl:b. Thus, an equiv-

alent noise can be defined as N o  
2 q(a+ib+i ) The phase

estimator in multimode shot noise under background limited

conditions is thus the same as the estimator obtained in

the Gaussian analysis with equivalent noise 2q(a+ib+idC.

2
Therefore, if F(s) - /c the MAP estimate is after

Eq. (4-39)

kb 2
F(r) L {- -. rcos.(r2 r(a ib+id) j l-

k
- ] a.rsinQ,(r) Y

j=l 3 -

for i b > b , (5-20)

and tho ML estimate is the same one :iven by Fol. (4-48).

In order to illustrate how Eqs. (5-12) and (5--17) ch-n;e
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with k and to compare them to Eqs. (5-20) and (4-48), some

examples are given in Tables IV and V.

Performance of the Phase Estimators in Shot Noise

Considering that the phase estimates found in the

Gaussian noise analysis are asymptotically unbiased for

high SNR, the Cramer-Rao inequality seems to be also an

appropriate measure of performance of the shot noise phase

estimator under the same SNR restrictions. From Eqs. (4-78)

and (5-6), the MAP-CRB bound is given by

) 2 1-[j _j F(e ) -

CRB = E + s(+) + F 36. (5-21)

By making the substitutions of Eqs. (3-25) and (4-85) into

Eq. (5-21), the bound transforms into

2 2L k [a-sine+ .cosa] k/2Tr
CRB = E _. E _ _

92 1 [(xjcos0-j sinO]k/2n+(a+ib+id )/b

E [F (0) .r . (5-22)

For Gaussian phase, Eq. (5-22) becomes

I bT [1 O iO~ oa
CRB = -2rq E3 "  (ajcose-5jsine)+27T(a+ib+id)/kb 2

A bT A + 1~

2

-2 
(5-23)

1 + a 0bTA0 /2rq
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TABLE IV

Examples of the MAP Phase Estimator Form
Under Multimode Shot Noise Conditions

DC Blocked, Eq. (5-17), F(O) = - 2

k O(r• .. rk)

3 o {rlcotO(r) - (r2+r3 )tan(O(r) + 7)}

2 1*

o0 {(rl+r3 )cot0(r) - (r 2 +r 4 )tan0(r)1

O a2 f dt r(t)cot(wt+g)

0

Background Limited, Eq. (5-20), F(e) = - /2

k 8(r• .. rk)

3 3/3 (2rl-r 2 -r 3 )klcose(r) - 2(r2 -r3 )klsinO(r)

4 V2 (r1-r3 )k1cosb(r) - /2 (r2-r4 )k1 sin§(r)

S r(t)coswtdt]k qcos;-[J r(t)sinwtdtlk sine
0 0

A kbo2

2n (a+ib+id)

ba2
k A b0e
q q (a+ib+id 8
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TABLE V

Examples of the ML Phase Estimator
Under Multimode Shot Noise Conditions

DC Blocked, Eq. (5-17), F(e) = 0

k taae(r r. rk )
r 1 /3 - tanO (r)

r 2 +r 3 3 + tan6(r)

Vt r

4 1+ r3

fTr (t) cot (wt+8) dt = 0

0

Background Limited, Eq. (4-48)

k tan&(r I ... rk)

-r 2r -r 2-r 33 1 2 3
3 2r

r1 - r3
r2 - r 4

fTr (t) coswtdt

0COO
fTr (t) sinwtdt
0
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TABLE V

(Continued)

y ' 0, Eq. (5-12), F (6) 0

k tanO(r 1 I... rk)

4 rl/(sin^(r)+1.11) - r 3 /(sinO(r)-1.11)

___ r2/(COSO(r)+1.11) - r 3 /(cos§(r)-1.11)

T -
CO f dt r (t) cot (t+6 + 0-

____0 
2
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where A is the expected value of the sum with respect to e.

For (a+i b+id) = b and k very large, Eq. (5-23) reduces to

(Ref 2:300)

2
a

Var (Cr) - 2 (5-24)
1 + a bT/q

The ML bound is on the other hand (a 2 large

Var (r bT (5-25)

the reciprocal of the collected count energy. The perform-

ance of Eq. (5-20) as given by the CRB bound is, from Eq.

(5-22) with F(e) = -/,

= bT k (axjsinO+ cos) 2k/2- 1- (cRB bT2 - E - + -2 .oI (5-26)
jl (a+ib+id)/b a

Invoking the identities of Eqs. (4-29) and (4-30), Eq.

(5-26) simplifies to

2 k 2b 2T k 2 1FI
CRB E bak ~ + . (5-27)1R 47 2q(a+i b+i d)j

Finally, the definitions of Eqs. (4-59), (4-60) and (4-77)

can be used to write the error variance as

E [CJ r+o 2
1 + Ea O/[2T' q(a+ib+i d )yk]

(a+ib+id) >> b , (5-28)
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or in the limit as k becomes very large

2

l.i.m. E[ r  2 , a i >> b .(5-29)
k - o r 1 + Ea2/q(a+ib+id)

Because of the requirement that ib >> b, small SNR, the

error is limited by the variance. Furthermore, the actual

error variance may be much higher due to the inherent SNR

restrictions needed to apply Eq. (5-22). For the ML esti-

mate, Eq. (5-28) becomes

2r 2q(a+ib+id)
Var r E i >> b , (5-30)

a

and Eq. (5-29) becomes

q(a+ib+id) L N
l.i.m. Var E 2E ib > b . (5-31)

Equation (5-31) tells that the ML estimate obtained from

Eq. (4-48), when used as an approximation for background

limited conditions, results in a bad estimate.

The foregoing discussion is based on Wyant's assertion

(Ref 16:2624) that for shot noise limited conditions, a

better method for measuring phase is as given by Eq. (5-19),

F(O) = 0, easily implemented by letting k = 4. (See Table

V, Background Limited.) The performance of Eq. (4-48)

analogous to Eq. (5-19) for ML, was proven to be exclusively

SNR dependent. The equivalent noise 2q(a+ib+id) also makes

the result of Eq. (5-19) SNR dependent, and the estimate is

likely to be erroneous. (See Eq. (5-31).) A better
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equation is given also in Table V for y 1, but the solu-

tion is not so straightforward. The analysis performed by0
Wyant gives an error variance (dark current neglected)

Va ( r 4. ( )2 -_____

ar r 2 k (5-32)
4y E2r.

j=l 3

where the photon counts can be evaluated from external

parameters. Comparison of Eq. (5-32) to Eq. (5-30) using

Eq. (5-9) gives the following inequality:

n2(a+ib)2 4 2q(a+ib)

k 2 k 2 (a+ib) >> b . (5-33)

4b r. bT k Z a.
j=l 3 j=l 3

For the particular case of k = 4, Eq. (5-33) yields

(a+iT 12(r +r+r 4 ) >> b . (5-34)

From Eqs. (5-32) and (5-9), Wyant's approach is found to be

also SNR dependent. Any good performance thus depends on

the condition that

k
Z r. >> (a+i (5-35)

j=l 3 b

From Eq. (5-34), obviously Eq. (5-35) is not true.

The foregoing results clearly indicate that phase esti-

mation requires a strong signal regardless of the noise

process. It can be noted that under low light level condi-

tions, the SNR constraints are more difficult to meet, and

large errors may be expected. With these conclusions, the
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analysis of phase difference estimation from measurements

from a single detector are completed within the scope of

this thesis. Given the added complexity of Eq. (5-8) and

time constraints, a simulation as performed in Chapter IV

is not included. Estimation of the actual phase components

, in Eq. (2-3) will be performed in the next chapter using

the measurements of the detector array as a whole.
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VI Joint Processing of Arra[ Signals
for Wavefront Estimation

The problem of phase difference estimation was

addressed in Chapters IV and V. Ideally what is desired

are the actual phases at specific points across the aper-

ture rather than slopes between points. The methods usually

employed to find these phases consist of mappings of data

given by the measured wavefront difference functions A(r a )

and the geometry of the data points. These mappings use the

concepts of least squares fitting and are discussed by

Fried (Ref 1), Hardy et al (Ref 4), Hudgin (Ref 5), Rimmer

(Ref 10),and Wyant (Ref 16) among others. The general

result given by these mappings is an average of phases and

measurements about a single point, requiring a recursive

solution.

A different approach will be used in this thesis which

uses the fact that the phases across the aperture are spa-

tially correlated due to slow spatial variation of the

wavefront, and the assumption that a spatial covariance

matrix is available from experimental measurements. There-

fore, by jointly processing the outputs of the two detector

arrays discussed in Chapter II, a phase estimate can be

made in real time. Because of the a priori information

supplied by the covariance matrix, an improvement is expec-

ted over mappings of data points.

The criteria of Maximum A Posteriori estimation will

be used in this chapter, but the algorithm so obtained will
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be in continuous waveform rather than discrete counts.

Because of the difficulty in applying the MAP theory, sev-

eral assumptions need to be made in order to simplify the

algorithm derivation. The problem will be worked out in

the Gaussian context or second moment models only, where

detector thermal noise is the predominant noise source. The

noise waveforms from each detector are samples from indepen-

dent white Gaussian processes with zero-mean and strength

N /2. The subscript K will be used to index the K(th)

detector. The phases f(r,t) will be assumed to be stepwise

constant in the interval sequence (0, T, 2T, ...) as pre-

sented in Chapter I. The covariance matrix is, therefore,

constant in each interval, but needs to be updated every T

seconds. This is the sequential problem which is beyond

the scope of this thesis. A suggestion, however, will be

given later for sequential estimation by quantizing O(r,t)

when it is continuous in time. The final assumption to be

made is that of a jointly Gaussian random phase distribution

over the aperture. The time-space problem fitted to the

above description is one of multiple channel, multiple

parameter estimation in Gaussian noise.

Multidimensional Estimator Formulation

Derivation of the required time-space estimator equa-

tion will be made in this section. The next section will

treat the specific application to the shearing interferome-

ter output. So, the multiple observation model can be

written in vector form as
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r(t) : s(t,a) + n(t) , 0 < t T , (6-1)

where r(t) is a column vector of the outputs from a two-

dimensional detector array, indexed with a single subscript

1 < K < m. A vector of phase parameters a over the aper-

ture, indexed also with a single subscript 1 < p - n, is to

be estimated jointly using all available outputs. The for-

mulation needed for array processing is a direct extension

of the single element case. Let the output from the K(th)

detector be

r K (t) = SK (t,a) + n K(t) (6-2)

The noise statistics are given, from Eqs. (4-2)-(4-6), as

Ern K(t)] = 0 (6-3)

and
2kTK

E[n K(t)n (t')] R K 6(t-t')
K K R

K

wSK K ( - ' (6-4)
2

It is assumed that the noises in the detectors are statis-

tically independent of each other. The detector outputs r-K

are also statistically independent as was shown in Eqs.

(4-9)-(4-13). Therefore, an array output vector can be

defined as

R [r1 .. _ ... rm I] T  (6-5)
- [i""r ,(695
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and the conditional density of the observations given the

phase vector is found from

m
f (RIa) = f r) (r (6-6)

Rl K1 -K Ia -'

where f rla(r Ka) is given by Eq. (4-14) The likelihood

function defined by the ratio

A A [lnfRIa(Ria)]/[lnfR(R)] (6-7)

is therefore given by

A m k r) 1 () 2A E. E s. C(a) (s j Ca))
T =1 j=l W2 K 3 21

(6-8)

Equation (6-8) must be maximized by the proper choice of

all the elements a in a. Since the phases across the aper-p-

ture are assumed jointly Gaussian and spatially correlated,

they can be represented in a different coordinate system

where the new elements a. are independent Gaussian randomI

variables, each with density

f (a.) [27a2a. / 2 exp [ -a2 /2 ° 2 a. (6-9)
a a 1

Beginning the estimator derivation with Eq. (6-9), the MAP

estimate of ai can be obtained by maximizing {A + lnfa. (ai)}

with respect to a. The result in vector form is

T -3I -a W-  [r. (a)] a2 = 0 , (6-10)

a.
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where W is a positive definite diagonal matrix of terms W-.

To convert Eq. (6-10) to the actual parameter system, ap is

expanded into a set of orthogonal unit vectors - such that

N a1p)
a l.i.m. i (6-11)

N - o j=l

and
N

a i.i.m. Z ai4i , (6-12)
N - 00 j=l

where a. is obtained in a manner analogous to Eq. (3-14)
1

from

n P)

a. = P- (6-13)

P= P

In the same manner, it is also true that

Tas 3 (a) n Dsj (a) (p) (-4

__a- - - ap .i (6-14)
i p=l p

Equation (6-14) can be simplified by defining in vector

notation

(1)(in) a

as. I ) (a) as. (a)

3a 1  .. aa 1
n (p) .(a) T

as. (a) as (m) (a)

3a3

4 D.(a) (6-15)
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By using Eqs. (6-14) and (6-15), Eq. (6-10) becomes

2 2T k 2  k _TD (a 1~

a a E D(a)W [ - sj(a)] (6-16)
T ai j -1 -J- -j j

By using Eq. (6-16) in Eq. (6-12), the joint estimate is

a 2q2k [a 2a T ~ N 0 0 lim °. -

k -1
Z D.(a)W [r j - sj(a)] (6-17)

j=l -3

The covariance matrix is given by (Ref 12:222)
N
Na  = 2 T (6-18)

N - - i=l 1

and is assumed to be known in the interval (tilt 1+T). It

is further defined by

kI  ... k n

k E[a aT ] [ (6-19)

kn kn

Therefore, the discrete joint MAP estimate of a is given by

_2q 
2k k -1ajr k ! Dj (a)w-l[rj-sj (a)] , I  t 1 l+T .alr) -k__

T -a. - - -j--1 -1

(6-20)

Equation (6-20) can be converted into a continuous form by

substituting for the definition of Eq. (3-14). By observing

that, for a set _(t) of complete orthonormal functions,

93



kliM. E rj(t)¢j,(u) = (t-u) (6-21)
k 00 j=l

then Eq. (6-20) becomes

T

2-a D(t,a)w [r(t) - s(t,a)]dt

for 0 S t T , (6-22)

where

asI (t,a) asm (t,a)-

D(t,a) A .. (623)

as (t,a) asm (t,a)

aan n

Equation (6-22) is the joint MAP ;stimate from a continuous

measurement of a Gaussian random vector a observed in Gauss-

ian noise. This is the result that will be used in the

forthcoming developments to process jointly the outputs of

a shearing interferometer. Equation (6-22) can also be

obtained in a manner analogous to the single detector by

performing a correlation-summing operation as shown in

Figure 20 (Ref 14:367,452,453).

Wavefront Estimation from the Shearing Interferometers

The output fields of the interferometers at the focal

planes are received and processed by two separate detector

arrays, one each for the X and Y sheared fields as depicted

in Figure 2. Therefore, it will be convenient to keep
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Fig 20. Correlator-Summer Model for Joint Processing

track of the observations by use of appropriate subscripted

notation. Define

(t) xK(t,) + m£(t) (6-24)

z <(t) A yK£(t,O) + n,(t) (6-25)

where w £(t) and z K£(t) are the outputs of the <2 (th) detec-

tor in each of the x- and y-arrays. The subscripts K and k

index the rows and columns respectively. For any one detec-

tor, the signals can be written as

y(t,e) a + b sin (wt + 8{Ya))

for xa fixed, (6-26)
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and

x(t,6) = d + c sin(oit + 6(xa))

for ya fixed, (6-27)

where the difference functions are, from Eqs. (2-3) and (3-1)-

(3-5), given by

(a {(xa _ Ms FYa ) - (xa + MsdYa )  (6-28)

a 1 = { ai(xa - M ) - (xaY + )} . (6-29)8ya) a 'a -s d  a +Ms d

Further notational simplification can be made by defining

4(x-)- 4(x a - MsdYa )  (6-30)

(x +  _ (xsa + MsdYa )  (6-31)

4(y) A O(xay - M ) (6-32)

-(+ A (Xa,Y a +M Ms) (6-33)

so that Eqs. (6-26) and (6-27) can be written as

y(t,O) =a + b sin(wt + 2Y-) 2 (Y+

for xa fixed, (6-34)

and x(t,6) = d + c sin(wt + Ox 2 Ox

for ya fixed. (6-35)

Equation (6-22) can now be applied using Eqs. (6-24) through

(6-35) to perform the joint estimate of the wavefront phases

9
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using two plane detector arrays properly interfaced to

couple the x- and y-measurements with the same wavefront

points. But the two-array configuration must be set up

before proceeding to perform the joint phase estimation.

Configuration of the Detector Arrays. The need for the

use of two detector plane arrays for actual phase estimation

is a consequence of the structure of the difference func-

tions in Eqs. (6-30) through (6-35), obtained from the use

of lateral shearing instead of radial sheazing interferom-

etry. As is the case in the approach of data mappings, pro-

cessing of the observations r(t) requires a specific detec-

tor arrangement. In order to make full utilization of the

information collected, the detectors (and the arrays) must

be arranged so that each wavefront point be measured by as

many detectors as possible in order to provide a strong

deterministic relationship between the iu.'asurements over the

aperture. All other coupling is provided statistically by the

covariance matrix of the phases.

In order to provide redundancy of measurements, the

best possible detector arrangement is as shown in Figure 21.

This arrangement allows each phase point to be measured by

four detectors, two from each one of the arrays, and has

the advantage that only one reference phase is required to

determine the entire phase distribution. It is assumed that

such phase point is measured by another means or is set

arbitrarily equal to zero. The X's and Y's in Figure 21

denote the detector locations and the 4's denote the phase
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YI Y Y Y Y Y

¢ X X O x x 4 X

y Y Y Y Y Y

4 4 X 4 X 4 X 4 X mn Xmn

Y Y Y Y Ymn Y

X 4 X 4 X X X 4 m+ln+l

- X-Shear

Fig 21. Arrangement of Two Detector Arrays to Measure
(m+l)x(n+l) Phase Points with (m+l)xn X- and
mx(n+l) Y-Detectors

points being measured. Except for the edge phase points,

each phase K is measured by detectors xK£, x K_,l , yK£

and Y,-,' OK. being a common phase point of the four dif-

ference functions 0
K (xa), aKl, (xa), aK (ya), and e ,£_l(Ya).

The grid shown in Figure 21 is formed by overlapping the two

arrays to indicate the relative positions of the X- and Y-

shear detector. The corresponding detectors x., and y are

not located at the same point on the field. They are dis-

placed 450 instead so that both can measure the same phase

The direction of the shear has been chosen from right

to left and bottom up to correspond to the notation adopted

in Eqs. (6-34) through (6-37). In this arrangement the

I
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detector spacing has been chosen so that

Kk (y-) = K+l,P,(Y + )  (6--36)

and Kk(x-) = K,k+l(x + ) (6-37)

in Eqs. (6-30) through (6-35). The detectors must then be

spaced 2M shear distances sd apart (sdx and sdy may not

necessarily be equal). This is depicted in Figure 22 for a

column array.

In general, for a non-square array of phase points, the

number of detectors is different in each array. Thus,

referring to Figure 21, there are [m+l]xn X-detectors and

mx[n+l] Y-detectors, and [m+l] [n+lJ measured phases. The

ratio of detector to phase points is

[m+l]xn + nx[n+l]
m+l] x [n+l]

and ranges from unity, when a minimum of four phases are

measured with two each X- and Y-detectors, up to the value

of two, in the limit when a very large number of phase

points are being measured. Thus, in the best possible

arrangement of Figure 21, the number of detectors required

tends to double as more wavefront points are measured simul-

taneously. With these preliminaries completed, derivation

of the algorithm for wavefront estimation by jointly pro-

cessing the two detector array outputs can be initiated.

Joint Wavefront Estimation with Two Detector Arrays.

The observations r(t) can be arranged in a column vector of
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i (t): (0201) -
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m

z (t): Ml

Om+lg

Fig 22. Arrangement of Detector Column Array for
Joint Processing

dimension (m[2n+l]+n), using the notation of Eqs. (6-24) and

(6-25). Thus,

r(t) [z11 (t),wll(t) ... Zmn(t) ,w mn(t)

T
.. Wm+l,n(t)] (6-3F

where zKZ(t) and w<K(t) are the observations with signal

components given, after Eqs. (6-34) through (6-37), by

y(t,) = a + bsin(t + K+l, Q
-. KY, b2.sn 2

for 0 < t _< T,

1 K M,

1 t _ £ _ n+l, (6-39)
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and x d + c sin (wt + 2

for 0 : t T,

1 K < m+l,

1< X £ n . (6-40)

The arguments (x ) and (y +) used in Eqs. (6-34) and (6-35)

are dropped from Eqs. (6-39) and (6-40) since the ambiguity

is taken care of by the subscripts K+l,k and K,Z+l, and

because K (x+ ) = <k(y+).

The phase vector is also a ([m+l] [n+l]) column matrix

4 = [i'" 1 - pq - ' m+l,n+l ]T  (6-41)

and has a ([m+l] [n+lJ) symmetrical covariance macrix with

terms from kll,11 to km+l,n+l;m+l,n+I . The noise covariance

matrix, on the other hand, is (m[2n+l]+n) diagonal (noises

were assumed spatially uncorrelated) given by

Nl
N11

M 0

W .(6-42)

Nn,n+l

Lm+l,n

where the N's and M's make reference to X- and Y-detector

noises respectively. With the observation and covariance

matrices defined in Eqs. (6-38) through (6-42), Eqs. (6-22)

and (6-23) can be applied directly to perform the joint

estimation of the vector 4.
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Thus, the product W- [r(t) - s(t,_)] in Eq. (6-22) is

a (n[2n+ll+n) column matrix with general terms

1
N £ [z K£(t) - y k£(t,@_)]

KZ.

for 1 K < m,

1 £ S n+l, (6-43)

and

M [w K (t) xK (t,41]
Kz2

for 1 < < m+l,

1 -£ < n. (6-44)

The signal derivative matrix is ([m+l] [n+l])x(m[2n+l]+n)

dimensional given by

aY 1(t,) Xl 11(t,) axm+l,n (tIl

D(t,f) .

'Y l l (t , _) X l (t , 3_) Xm + l , n (t , O _

m+l,n+l ' m+l,n+l "m+l,n+l

(6-45)

By carrying out the matrix multiplications of Eq. (6-22),

the MAP estimate of the pq(th) phase is found in general

terms to be given by
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m+l n+l m n+l 2kpq,ij Ty<k(t,$)

pq i=l j=l K=I k=i N KkO ij [ty (_]

m+l nOT ax (t,))
+ Ei [w (t)-x K(tO)dt (6-46)

Finally, when Eqs. (6-39) and (6-40) are used in Eq. (6-46),

the general pq(th) member of the _ vector of Eq. (6-41) is

obtained. The result is given by

m n+l b I
Z= [k k Ipq K=1 £=1 N<k pq;K+l,k pq,K9.

T
(t)COS(Wt + 2K+1,)

m+l n C KZ
+= E E M [kpq;K,Z+l kpq,K9]
K=1 21=1 Kk.

T ,£ -
W (t)COS(wt + 2K+l K9.

Wf KijO~i 2 )t

for 0 _< t < T,

1 < p _ m+l,

1 & q _ n+l, (6-47)

Equation (6-47) is the joint Maximum A Posteziori phase

estimator using measurements of two orthogonal, lateral

shearing interferometers and their detector arrays. The

phase estimate distribution over the aperture is shown in

Figure 23.
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Fig 23. Phase Estimate Distribution Over the Aperture

The algorithm given by Eq. (6-47) is applicable only

when the phases O being measured are jointly Gaussian ran-

dom variables and the a priori information represented by

ka is available. The distinction between pq and rs in

Eq. (6-47) is made, observing the structural form of Eq.

(6-46), by the covariance terms kpj and k only,Pq,i3 rs,i3

where i and j take on all values from 1 to m+l, and 1 to

n+l respectively. Therefore, the joint phase estimates are

weighted accordingly by the a priori information. This

will be further explained in a forthcoming example.

Solution of Eq. (6-47) is to be obtained recursively

with numerical methods on a digital computer. However, to
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illustrate the estimator, Eq. (6-47) can be implemented with

a heuristic correlator-summer of considerable complexity as

will be seen in the following example.

Illustrative Example. The simplest example to illus-

trate a hardware implementation of Eq. (6-47) is given by

the joint estimate of a wavefront at four locations using

two (2x2) detector arrays. The arrangement Ji; shown in

Figure 24. The notation is so chosen for simplicity.

Detector Y2 corresponds to Y12 and phase ¢'4 corresponds to

22 in the notation of Eq. (6-47). It will also be assumed

that the noises are of equal strength N and the signals0

have equal amplitude V2Ea/T. With the problem so defined,
(th)

the p phase estimate is given, from Eq. (6-47), by

p- R0 T - (k p3-kp) z1 (t)cos(wt + - )dt

T ¢4_2
+ (k -k) z (t)cos(wt + 2 )dt

0

T ^2_l

+ (kp 2 _kpl)f w1 (t)cos(wt + 2 )dt

0

T

+ (kp 4 -kp 3 ) fw 2 (t)cos(wt + 2 )dt (6-48)

0

where any r is set as the zero reference. Equation (6-48)

can be implemented with a correlator-summer as shown in

Figure 25, where cos(wt + ) is denoted by %, The

2 -_ j, Th

structure of Figure 25 is a feedback system in which the
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Fig 24. Phase-Detector Grid for Joint Processing of Four
Detectors to Estimate Four Wavefront Phases

detector outputs are weighted by the covariance terms so

that each phase estimate has a contribution from each meas-

urement. Three feedback loops from the estimate outputs

and are returned to the detector inputs. The

estimate does not provide any feedback for being the

starting point of the spatially recursive estimation. The

phase output 3 has been arbitrarily set as the zero refer-

ence.

To better understand how this formidable structure

weighs the measurements, or better yet, what Eq. (6-48)

really does, the underlying mechanism is shown in Figure 26.

Here, the phase points have been replaced by the covariance
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k11  w 1 (t) k12
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a
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Fig 26. Underlying Mechanism to Estimate 1 and 43
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terms of 4p with respect to the other phases. The detector

locations have been denoted by their measurements z(t) and

w(t). Figure 26-a shows the mechanism involved in esti-

mating #I* Each phase location has the covariance term

involving ¢i and the phase at each point; this is the mean-

ing of the arrows. The operation involves taking pairwise

the difference between the covariance terms at all points

and multiplying by the measurement made between each two

points (this means the output of the integrator). Thus,

the difference between k and k14 is multiplied by zero

because there is no detector in between. In the same man-

ner, Figure 26-b shows the same mechanism used to evaluate

43" Here, the covariance terms are k3 3, k31 , k3 2 and k3 4.

This can be generalized for any number of array elements.

From this example, it is evident that the algorithm

indeed provides a means for jointly processing spatially

correlated phase measurements. It also implies a simultane-

ous evaluation of all phase points and a recursive substi-

tution. The difficulty involved in solving Eq. (6-47)

numerically is also evident due to the redundancy provided

by the feedback loops. Therefore, such a solution goes

beyond the scope of this paper.

Estimator Performance

The performance of the estimator of Eq. (6-22) is more

easily described in terms of the Cramer-Rao bounds, provided

that the signal-to-noise ratio is large and biases are

1
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negligible. Then, the lower bounds on the error matrix are

the diagonal terms of the matrix

R = ka[ + D k F (6-49)

adapted from a more general case given by Van Trees (Ref 13:

454). Simplification to the point of Eq. (6-49) is possible

because the matrix

T
DRa(u, l) f_/ E [D (t'f)W-I1D T (t' ¢) ] t

0

- D (6-50)-a

is constant over (O,T) for s(t,_) defined as [a+bsin(wt+f].

To find the MS error bounds, the matrix operations of

Eqs. (6-50) and (6-49) must be performed. Carrying out

these matrix multiplications is a rather cumbersome task.

After some work, the matrix Da(u ) is found to have a

diagonal band form with dimensions (m[2n+l]+n)x([m+l] [n+l])

as illustrated in Figure 27. The five X's in each column

are civen by

2 ( j-l~ aYp1  ] (6-51)
Np-lPq p-q q

2 Li 19-(6-52)
Mpq p,q-1 3x .q-) (6-52
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x xx X X
x xx Xx
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Fig 27. The Form of the Matrix Da(u4)l

2 AVp 2 (~ ~ 2 Af'x \~2 /xg. 1 2

IQ($pq, + 2p. 1,, + M +~at 2, p, i c

p) plq pq RpqV pq Tp M pqI

(6-53)

lax ax2 pq pq (6-54)

pq pq+l apq

-a (6-55)
N pq a4P+1 q apq/

The product D (u,fl)k is a ([m+lln+1]) square matrix. The

general term at location pq,ij is given by



N aa p-,l)
p-i,q( pq 'p-iql P-i,q;ij

(______ax
+ M-lpq1  o ~ p,q-i! p,q-1;ij

/(av 2g 2 2a 2a~. 1 2
~N g a pq/Np~ qk a~ / *pq Opq/ Rp -pq kpq;j

2/axp DX N+ M -( c PaI
pq\ pg ap,gq,,pl) ii

+ _2 (pg aYpg
Wpqg DoPp ap+1 q/p+l q;ij

for

N, y: 1. : p M, I q :5 n+1

MIX: 1 P m+i 1 1 q n

1 i m+i 1 1 S n+i 16-56)

Integration of the matrix with general term given by Eg.

(6-56) gives a constant matrix Dak whose generai term at

location pg,ij is given by

p-~ _k - p,g-1
-4N p- i~ -,q;ij 4MPq-

2 2 2

- 5-q ~ p'; :qjgi (6-57)



The matrix D a is ([m+l][n+l]) square and p, q, i, and j are

bounded as in Eq. (6-56). Further evaluation of the error

matrix is to be done numerically to yield the diagonal

values of RB defined by Eq. (6-49). This evaluation as

well as a numerical solution of Eq. (6-47) are not included

in this paper due to the difficulties encountered in under-

taking that task. This, however, does not discourage fur-

ther study since Eqs. (6-47) and (6-57) are believed to be

correct.
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VII Conclusions and Recommendations

Conclusions

The purpose of this work was twofold: (1) perform a

discrete phase estimation analysis for a single detector

measurement, and (2) perform a joint phase estimation

analysis for multiple detector measurements. This work was

prompted by the need for improved processing techniques

directly applicable to shearing interferometry and wave-

front correction systems.

I The first workfront motivation was to determine in a

stochastic sense if phase estimation algorithms with the

simplicity of the form of

= 1 
1 -D] , (7-1)

from Reference 16, intended for use with low level signals,

could be obtained using Maximum A Posteriori and Maximum

Likelihood estimation theories, and the conditions for which

they would give good phase estimates. A family of such

algorithms was found and is given by the ML estimator Eq.

(4-48), which is a specialized result of the MAP Eq. (4-36),

derived under the white Gaussian noise assumption. A simi-

lar result is also given by Eq. (5-8), derived under the

Poisson shot noise assumption, for the case of low fringe

visibility. It is shown, however, without empirical veri-

fication (computer simulation), that this algorithm form

will result in poor estimates under those modeling conditions.
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The performance analyses carried out in Chapters IV

and V (both theory and simulation) show that the only factor

affecting phase estimation performance is the SNR regardless

of the noise process involved and the technique used. In

fact, the performance of both MAP and ML estimators is

asymptotically given by the reciprocal SNR with an appro-

priate scaling factor for the particular algorithm form

used (given k). Emphasis is made on this point to clear up

Wyant's implication that Eq. (7-1) might be free from the

SNR restrictions.

The estimators of Eqs. (4-39) and (4-48) were verified

with a simple computer simulation with results presented

in Figures 10-19. The similarity of performance between

the MAP and ML estimators particularly for SNR > 10 dB

follows directly from the implications of Eqs. (4-91) and

(4-95), which predict the same asymptotic performance of the

MAP and ML phase estimators for large SNR, and the implica-

tion of Eq. (4-90), which tends to ignore a priori informa-

tion as the noise in the measurement decreases.

For a given SNR, there exists a tradeoff between algo-

rithm simplicity and algorithm performance of the discrete

estimators. The increased structural complexity as k

increases from k = 3 to infinity is illustrated with a few

examples in Tables I, II, IV and V. This complexity is

particularly noticeable in the Poisson analysis equations.

The return of using the more complex forms is an improved

performance as shown in Table III and plotted on a relative

115



basis in Figure 9. The difference in theoretical perform-

ance between the worst (k = 3) and the best (k = -) possible

estimator forms is 1.65 dB according to the definition of

Eq. (4-76), and decreases quite rapidly as the number of

counts (k) increases. On the basis of this performance-

complexity tradeoff, the photon counting technique (k <

is suboptimal (but acceptable) with respect to current-

measurement (k = c) based phase estimation.

The second motivation of this work was the analysis of

a time-space problem intended to provide a joint estimate

of the phases across the aperture of the interferometer.

Such joint processing had not been addressed in the light

of MAP theory, where the fact that the phases were spatially

correlated could be used to improve performance. The algo-

rithm derived is given by Eq. (6-47) and is restricted to

the assumption of a Gaussian phase distribution. The

weighting between measurements is explicitly shown by the

covariance terms in Eq. (6-47). The difficulty with this

algorithm is the mathematical form of simultaneous non-

linear integral equations for which a solution is not

readily available. The performance equations were carried

out up to the point of numerical evaluation, which is not

included due to time constraints imposed by the difficulties

encountered in deriving the algorithms. Thus, a direct

comparison to other estimators such as the one derived by

Hudgin (Ref 5) is not possible given the form of Eqs. (6-47)

and (6-57).
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Recommendations

The study contained in Chapters IV through VI was

performed for the extreme cases of detector limited and

signal limited noise statistics. It is not unreasonable to

think that the intermediate cases are also encountered in

the reception of optical fields, where both thermal and

shot noise occur together. These noise processes are inde-

pendent of each other, and the density of the observables

is then a convolution of Gaussian and Poisson functions.

Estimation under these conditions should be tried.

The random phase in the argument of the sine function

represented both target and turbulence. Going beyond the

application of wavefront correction systems, it may be

desirable to distinguish target and noise induced phases.

This is estimation in the presence of unwanted parameters

and should also be considered.

The basic assumption of the analyses presented in this

paper was the time invariance of the phase in the measurement

interval. Although the staircase approximation to the phase

process may be suitable for slowly varying fields, it

requires an update of the covariance matrix in each inter-

val. A procedure should be tried for which 0(t) is time-

dependent throughout the measurement, thus freeing the esti-

mation problem from the requirement of short observation

intervals. This could be done by homodyning the detector

signal and filtering the frequency domain components with a

low pass filter. The output signal would then have the form
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r(t) = B - sinu (t) + n (t) (7-2)
2c

where B is a gain factor given by the amplitude of the mix-

ing signal, and n c(t) is filtered white Gaussian noise.

This waveform can now be used in Eq. (3-15) to obtain

Ab A
r. = - sinO. + - n (7-3)
j 2 3 -2 j

The signal has now been quantized and is in a suitable form

for recursive parameter estimation (Ref 2:319).

The joint processing algorithms of Eqs. (6-23) and

(6-47) were derived using the assumption of independent

detector noise processes. Development of an algorithm to

include the case of spatially correlated noise should also

be considered. Finally, the algorithm of Eq. (6-47) needs

to be worked out to an implementable form, and tested

through a performance evolution by means of Monte Carlo

simulation.
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